Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Antibiot (Tokyo) ; 77(3): 147-155, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38110564

RESUMEN

Talcarpones A (1) and B (2) are rare bisnaphthazarin derivatives produced by Talaromyces johnpittii (ex-type strain MST-FP2594), a newly discovered Australian fungus, which is formally described and named herein. The talcarpones were isolated along with the previously reported monomeric naphthoquinone, aureoquinone (3), suggesting a biosynthetic link between these metabolites. Talcarpone A is a lower homologue of hybocarpone (4), which was first isolated from a mycobiont of the lichen Lecanora hybocarpa. The structures of 1 and 2 were elucidated by detailed spectroscopic analysis, molecular modelling and comparison with literature data. Talcarpones 1 and 2 exhibited moderate antifungal activity (MIC 0.78-3.1 µg ml-1) and weak activity against Gram-positive bacteria (MIC 13-25 µg ml-1). The talcarpones also demonstrated noteworthy chemical reactivities, with 2 converting rapidly to 1, which in turn converted slowly to the highly coloured 3. These post-biosynthetic reactions point to a potential ecological role for the talcarpones in providing ongoing (slow-release) physicochemical protection for T. johnpittii against solar irradiation.


Asunto(s)
Talaromyces , Talaromyces/química , Australia , Antifúngicos/farmacología , Antifúngicos/química , Estructura Molecular
2.
Chin J Integr Med ; 29(12): 1099-1110, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37594702

RESUMEN

OBJECTIVE: To investigate the involvement of endothelial cells (ECs)-derived exosomes in the anti-apoptotic effect of Danhong Injection (DHI) and the mechanism of DHI-induced exosomal protection against postinfarction myocardial apoptosis. METHODS: A mouse permanent myocardial infarction (MI) model was established, followed by a 14-day daily treatment with DHI, DHI plus GW4869 (an exosomal inhibitor), or saline. Phosphate-buffered saline (PBS)-induced ECs-derived exosomes were isolated, analyzed by miRNA microarray and validated by droplet digital polymerase chain reaction (ddPCR). The exosomes induced by DHI (DHI-exo), PBS (PBS-exo), or DHI+GW4869 (GW-exo) were isolated and injected into the peri-infarct zone following MI. The protective effects of DHI and DHI-exo on MI hearts were measured by echocardiography, Masson's trichrome staining, and TUNEL apoptosis assay. The Western blotting and quantitative reverse transcription PCR (qRT-PCR) were used to evaluate the expression levels of miR-125b/p53-mediated pathway components, including miR-125b, p53, Bak, Bax, and caspase-3 activities. RESULTS: DHI significantly improved cardiac function and reduced infarct size in MI mice (P<0.01), which was abolished by the GW4869 intervention. DHI promoted the exosomal secretion in ECs (P<0.01). According to the results of exosomal miRNA microarray assay, 30 differentially expressed miRNAs in the DHI-exo were identified (28 up-regulated miRNAs and 2 down-regulated miRNAs). Among them, DHI significantly elevated miR-125b level in DHI-exo and DHI-treated ECs, a recognized apoptotic inhibitor impeding p53 signaling (P<0.05). Remarkably, treatment with DHI and DHI-exo attenuated apoptosis, elevated miR-125b expression level, inhibited capsase-3 activity, and down-regulated the expression levels of proapoptotic effectors (p53, Bak, and Bax) in post-MI hearts, whereas these effects were blocked by GW4869 (P<0.05 or P<0.01). CONCLUSION: DHI and DHI-induced exosomes inhibited apoptosis, promoted the miR-125b expression level, and regulated the p53 apoptotic pathway in post-infarction myocardium.


Asunto(s)
Exosomas , MicroARNs , Infarto del Miocardio , Ratones , Animales , Proteína p53 Supresora de Tumor/metabolismo , Células Endoteliales/metabolismo , Exosomas/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Miocardio/metabolismo , Infarto del Miocardio/complicaciones , Infarto del Miocardio/tratamiento farmacológico , Apoptosis , MicroARNs/genética , MicroARNs/metabolismo
3.
Plant Dis ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627798

RESUMEN

Pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.) is grown to extract pyrethrins which are active ingredients for insecticides (Greenhill 2007). The Australian pyrethrum industry supplies over 50% of the world market. Surveys of Tasmanian crops in spring 2013, detected the presence of a fungus putatively identified as Itersonilia perplexans Derx. on foliage in 54 of 86 surveyed fields (Hay et al. 2015). This fungus was associated with necrotic leaf tips often spreading to encompass whole leaves. However, pathogenicity to pyrethrum was not confirmed. To isolate, tissue was excised from foliar lesions, surface sterilised using 0.4% NaClO, placed onto 2% water agar and incubated at 20°C for 5 days. Colonies were pure-cultured by hyphal-tip transfer onto potato-dextrose agar. Eleven isolates were cultured onto yeast mold agar (YMA) for 14 days at 15°C in the dark (Horita and Yasuoka 2002). Colonies were slow growing (1.9 to 2.3 mm/day) white to buff on both surfaces, with a darker center visible on lower surfaces. Mycelia were straight and hyaline with clamp connections at the septa. Squares transferred from the edge of YMA colonies onto microscope slides produced ballistoconidia that were aseptate, granular and lunate, kidney or lemon-shaped after 24 h. Ballistoconidia lengths and widths (n = 50/isolate) ranged from 14.6 to 20.4 µm and 10.0 to 13.6 µm. Chlamydospores were not observed. These observations were consistent with descriptions of I. perplexans (Koike and Tjosvold 2001; Liu et al. 2015). All 11 isolates were sequenced across the internal transcribed spacer (ITS) region of rDNA (ITS; primers V9G/ITS4; de Hoog and van den Ende 1998; White et al. 1990), and large (LSU; primers LROR/LR7; Rehner and Samuels 1995), and small (SSU; NS1/NS4; White et al. 1990) subunits of rDNA (Genbank accession nos. KU563626 to KU563658). The ITS (673 bp), SSU (1,047 bp) and LSU (1,318 bp) differed by 3, 1 and 0 bp, respectively, across isolates. Maximum parsimony and maximum likelihood analyses of a concatenated 3 loci alignment with Cystofilobasidiales representatives (Liu et al. 2015) placed all isolates and the I. perplexans ex-neotype strain CBS 363.85 within a single monophyletic clade with 100% bootstrap support. Two representative isolates are stored at the Plant Pathology Herbarium (accession nos. BRIP 57986 and 57987). Leaves of 46-day-old pyrethrum plants (n = 45), generated from surface sterilised seed, were inoculated with a 1.5 × 105 ballistoconidia/ml suspension (equal mix of eight isolates) and maintained between 10 and 22°C under a 12-h photoperiod for 14 days. Brown necrotic leaf tips, consistent with reported field symptoms were observed on 71% of plants and I. perplexans was recovered from 69% of symptomatic plants. For flower inoculations, pyrethrum plants were removed from fields as vegetative plants in spring and maintained in a greenhouse set at 20:14°C and 14:10 h day:night. Open flowers (10 per plant) were dipped into a 1.2 × 104 ballistoconidia/ml suspension mix of three isolates. Brown withered ray florets were observed on 10/12 plants 18 days post-inoculation, matching those described in petal blight of chrysanthemum (McRitchie et al. 1973). I. perplexans was re-isolated from 11/12 inoculated plants and 1 control plant (of 12) which exhibited the same symptoms. In both experiments, I. perplexans was identified based on its distinctive morphology. This confirms the pathogenicity of I. perplexans to both pyrethrum leaves and flowers.

4.
Front Fungal Biol ; 3: 956837, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37746236

RESUMEN

There are five closely related Sporobolus species, collectively known as weedy Sporobolus grasses (WSG) or the rat's tail grasses. They are fast growing, highly competitive, unpalatable weeds of pastures, roadsides and woodlands. An effective biological control agent would be a welcomed alternative to successive herbicide application and manual removal methods. This study describes the initial exploratory phase of isolating and identifying native Australian microfungi associated with WSG, prior to evaluating their efficacy as inundative biological control agents. Accurate species-level identification of plant-pathogenic microfungi associated with WSG is an essential first step in the evaluation and prioritisation of pathogenicity bioassays. Starting with more than 79 unique fungal morphotypes isolated from diseased Sporobolus grasses in Queensland, Australia, we employed multi-locus phylogenetic analyses to classify these isolates into 54 fungal taxa. These taxa belong to 22 Ascomycete families (12 orders), of which the majority fall within the Pleosporales (>24 taxa in 7 families). In the next phase of the study, the putative species identities of these taxa will allow us to prioritise those which are likely to be pathogenic based on existing literature and their known ecological roles. This study represents the first step in a systematic, high-throughput approach to finding potential plant pathogenic biological control agents.

5.
MycoKeys ; 78: 1-20, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613044

RESUMEN

Ascochyta koolunga (Didymellaceae, Pleosporales) was first described in 2009 (as Phoma koolunga) and identified as the causal agent of Ascochyta blight of Pisum sativum (field pea) in South Australia. Since then A. koolunga has not been reported anywhere else in the world, and its origins and occurrence on other legume (Fabaceae) species remains unknown. Blight and leaf spot diseases of Australian native, pasture and naturalised legumes were studied to investigate a possible native origin of A. koolunga. Ascochyta koolunga was not detected on native, naturalised or pasture legumes that had leaf spot symptoms, in any of the studied regions in southern Australia, and only one isolate was recovered from P. sativum. However, we isolated five novel species in the Didymellaceae from leaf spots of Australian native legumes from commercial field pea regions throughout southern Australia. The novel species were classified on the basis of morphology and phylogenetic analyses of the internal transcribed spacer region and part of the RNA polymerase II subunit B gene region. Three of these species, Nothophoma garlbiwalawarda sp. nov., Nothophoma naiawu sp. nov. and Nothophoma ngayawang sp. nov., were isolated from Senna artemisioides. The other species described here are Epicoccum djirangnandiri sp. nov. from Swainsona galegifolia and Neodidymelliopsis tinkyukuku sp. nov. from Hardenbergia violacea. In addition, we report three new host-pathogen associations in Australia, namely Didymella pinodes on S. artemisioides and Vicia cracca, and D. lethalis on Lathyrus tingitanus. This is also the first report of Didymella prosopidis in Australia.

6.
Front Microbiol ; 11: 1571, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765452

RESUMEN

In contrast to Eurasia and North America, powdery mildews (Ascomycota, Erysiphales) are understudied in Australia. There are over 900 species known globally, with fewer than currently 60 recorded from Australia. Some of the Australian records are doubtful as the identifications were presumptive, being based on host plant-pathogen lists from overseas. The goal of this study was to provide the first comprehensive catalog of all powdery mildew species present in Australia. The project resulted in (i) an up-to-date list of all the taxa that have been identified in Australia based on published DNA barcode sequences prior to this study; (ii) the precise identification of 117 specimens freshly collected from across the country; and (iii) the precise identification of 30 herbarium specimens collected between 1975 and 2013. This study confirmed 42 species representing 10 genera, including two genera and 13 species recorded for the first time in Australia. In Eurasia and North America, the number of powdery mildew species is much higher. Phylogenetic analyses of powdery mildews collected from Acalypha spp. resulted in the transfer of Erysiphe acalyphae to Salmonomyces, a resurrected genus. Salmonomyces acalyphae comb. nov. represents a newly discovered lineage of the Erysiphales. Another taxonomic change is the transfer of Oidium ixodiae to Golovinomyces. Powdery mildew infections have been confirmed on 13 native Australian plant species in the genera Acacia, Acalypha, Cephalotus, Convolvulus, Eucalyptus, Hardenbergia, Ixodia, Jagera, Senecio, and Trema. Most of the causal agents were polyphagous species that infect many other host plants both overseas and in Australia. All powdery mildews infecting native plants in Australia were phylogenetically closely related to species known overseas. The data indicate that Australia is a continent without native powdery mildews, and most, if not all, species have been introduced since the European colonization of the continent.

7.
PLoS One ; 15(5): e0227396, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32469865

RESUMEN

Elsinoë fawcettii, a necrotrophic fungal pathogen, causes citrus scab on numerous citrus varieties around the world. Known pathotypes of E. fawcettii are based on host range; additionally, cryptic pathotypes have been reported and more novel pathotypes are thought to exist. E. fawcettii produces elsinochrome, a non-host selective toxin which contributes to virulence. However, the mechanisms involved in potential pathogen-host interactions occurring prior to the production of elsinochrome are unknown, yet the host-specificity observed among pathotypes suggests a reliance upon such mechanisms. In this study we have generated a whole genome sequencing project for E. fawcettii, producing an annotated draft assembly 26.01 Mb in size, with 10,080 predicted gene models and low (0.37%) coverage of transposable elements. A small proportion of the assembly showed evidence of AT-rich regions, potentially indicating genomic regions with increased plasticity. Using a variety of computational tools, we mined the E. fawcettii genome for potential virulence genes as candidates for future investigation. A total of 1,280 secreted proteins and 276 candidate effectors were predicted and compared to those of other necrotrophic (Botrytis cinerea, Parastagonospora nodorum, Pyrenophora tritici-repentis, Sclerotinia sclerotiorum and Zymoseptoria tritici), hemibiotrophic (Leptosphaeria maculans, Magnaporthe oryzae, Rhynchosporium commune and Verticillium dahliae) and biotrophic (Ustilago maydis) plant pathogens. Genomic and proteomic features of known fungal effectors were analysed and used to guide the prioritisation of 120 candidate effectors of E. fawcettii. Additionally, 378 carbohydrate-active enzymes were predicted and analysed for likely secretion and sequence similarity with known virulence genes. Furthermore, secondary metabolite prediction indicated nine additional genes potentially involved in the elsinochrome biosynthesis gene cluster than previously described. A further 21 secondary metabolite clusters were predicted, some with similarity to known toxin producing gene clusters. The candidate virulence genes predicted in this study provide a comprehensive resource for future experimental investigation into the pathogenesis of E. fawcettii.


Asunto(s)
Ascomicetos/genética , Citrus/microbiología , Genoma Fúngico/genética , Anotación de Secuencia Molecular , Ascomicetos/patogenicidad , Pared Celular/enzimología , Minería de Datos , Familia de Multigenes/genética , Metabolismo Secundario/genética
8.
MycoKeys ; (35): 1-25, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29942174

RESUMEN

Several unidentified specimens of Curvularia deposited in the Queensland Plant Pathology Herbarium were re-examined. Phylogenetic analyses based on sequence data of the internal transcribed spacer region, partial fragments of the glyceraldehyde-3-phosphate dehydrogenase and the translation elongation factor 1-α genes, supported the introduction of 13 novel Curvularia species. Eight of the species described, namely, C. beasleyisp. nov., C. beerburrumensissp. nov., C. eragrosticolasp. nov., C. kenpeggiisp. nov., C. mebaldsiisp. nov., C. petersoniisp. nov., C. platziisp. nov. and C. warraberensissp. nov., were isolated from grasses (Poaceae) exotic to Australia. Only two species, C. lamingtonensissp. nov. and C. sporobolicolasp. nov., were described from native Australian grasses. Two species were described from hosts in other families, namely, C. coatesiaesp. nov. from Litchi chinensis (Sapindaceae) and C. colbraniisp. nov. from Crinum zeylanicum (Amaryllidaceae). Curvularia reesiisp. nov. was described from an isolate obtained from an air sample. Furthermore, DNA sequences from ex-type cultures supported the generic placement of C. neoindica and the transfer of Drechslera boeremae to Curvularia.

9.
Fungal Biol ; 119(5): 362-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25937064

RESUMEN

Novel species of Cercospora and Pseudocercospora are described from Australian native plant species. These taxa are Cercospora ischaemi sp. nov. on Ischaemum australe (Poaceae); Pseudocercospora airliensis sp. nov. on Polyalthia nitidissima (Annonaceae); Pseudocercospora proiphydis sp. nov. on Proiphys amboinensis (Amaryllidaceae); and Pseudocercospora jagerae sp. nov. on Jagera pseudorhus var. pseudorhus (Sapindaceae). These species were characterised by morphology and an analysis of partial nucleotide sequence data for the three gene loci, ITS, LSU and EF-1α. Recent divergence of closely related Australian species of Pseudocercospora on native plants is proposed.


Asunto(s)
Annonaceae/microbiología , Ascomicetos/clasificación , Ascomicetos/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Poaceae/microbiología , Ascomicetos/genética , Ascomicetos/crecimiento & desarrollo , Australia , Proteínas Fúngicas/genética , Datos de Secuencia Molecular , Factor 1 de Elongación Peptídica/genética , Filogenia
10.
IMA Fungus ; 6(2): 483-91, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26734551

RESUMEN

So far 19 genera of downy mildews have been described, of which seven are parasitic to grasses. Here, we introduce a new genus, Baobabopsis, to accommodate two distinctive downy mildews, B. donbarrettii sp. nov., collected on Perotis rara in northern Australia, and B. enneapogonis sp. nov., collected on Enneapogon spp. in western and central Australia. Baobabopsis donbarrettii produced both oospores and sporangiospores that are morphologically distinct from other downy mildews on grasses. Molecular phylogenetic analyses showed that the two species of Baobabopsis occupied an isolated position among the known genera of graminicolous downy mildews. The importance of the Poaceae for the evolution of downy mildews is highlighted by the observation that more than a third of the known genera of downy mildews occur on grasses, while more than 90 % of the known species of downy mildews infect eudicots.

11.
Appl Environ Microbiol ; 74(24): 7490-6, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18931288

RESUMEN

Lactococcus lactis is a gram-positive bacterium that is widely used in the food industry and is therefore desirable as a candidate for the production and secretion of recombinant proteins. Previously, we generated a L. lactis strain that expressed and secreted the antimicrobial cell wall-lytic enzyme lysostaphin. To identify lactococcal gene products that affect the production of lysostaphin, we isolated and characterized mutants generated by random transposon mutagenesis that had altered lysostaphin activity. Out of 35,000 mutants screened, only one with no lysostaphin activity was identified, and it was found to contain an insertion in the lysostaphin expression cassette. Ten mutants with higher lysostaphin activity contained insertions in only four different genes, which encode an uncharacterized putative transmembrane protein (llmg_0609) (three mutants), an enzyme catalyzing the first step in peptidoglycan biosynthesis (murA2) (five mutants), a putative regulator of peptidoglycan modification (trmA) (one mutant), and an uncharacterized enzyme possibly involved in ubiquinone biosynthesis (llmg_2148) (one mutant). These mutants were found to secrete larger amounts of lysostaphin than the control strain (MG1363[lss]), and the greatest increase in secretion was 9.8- to 16.1-fold, for the llmg_0609 mutants. The lysostaphin-oversecreting llmg_0609, murA2, and trmA mutants were also found to secrete larger amounts of another cell wall-lytic enzyme (the Listeria monocytogenes bacteriophage endolysin Ply511) than the control strain, indicating that the phenotype is not limited to lysostaphin.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lisostafina/metabolismo , Mutagénesis Insercional , Cromosomas Bacterianos , Elementos Transponibles de ADN , Orden Génico
12.
Appl Environ Microbiol ; 73(19): 6144-9, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17675432

RESUMEN

In Lactococcus lactis, the interactions between oxidative defense, metal metabolism, and respiratory metabolism are not fully understood. To provide an insight into these processes, we isolated and characterized mutants of L. lactis resistant to the oxidizing agent tellurite (TeO(3)(2-)), which generates superoxide radicals intracellularly. A collection of tellurite-resistant mutants was obtained using random transposon mutagenesis of L. lactis. These contained insertions in genes encoding a proton-coupled Mn(2+)/Fe(2+) transport homolog (mntH), the high-affinity phosphate transport system (pstABCDEF), a putative osmoprotectant uptake system (choQ), and a homolog of the oxidative defense regulator spx (trmA). The tellurite-resistant mutants all had better survival than the wild type following aerated growth. The mntH mutant was found to be impaired in Fe(2+) uptake, suggesting that MntH is a Fe(2+) transporter in L. lactis. This mutant is capable of carrying out respiration but does not generate as high a final pH and does not exhibit the long lag phase in the presence of hemin and oxygen that is characteristic of wild-type L. lactis. This study suggests that tellurite-resistant mutants also have increased resistance to oxidative stress and that intracellular Fe(2+) can heighten tellurite and oxygen toxicity.


Asunto(s)
Proteínas de Transporte de Catión/antagonistas & inhibidores , Hierro/metabolismo , Lactococcus lactis/efectos de los fármacos , Estrés Oxidativo , Oxígeno/toxicidad , Telurio/farmacología , Proteínas Bacterianas/metabolismo , Transporte Biológico/efectos de los fármacos , Proteínas de Transporte de Catión/metabolismo , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Lactococcus lactis/metabolismo , Complejos Multienzimáticos/metabolismo , Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...